

ESTRADAS DE PORTUGAL, S.A.

TROÇO IC2 – BATALHA SUL / PORTO (IC1)

PLANO DE ACÇÃO

Lisboa, Abril de 2015

Esta página foi deixada propositadamente em branco

ESTRADAS DE PORTUGAL, S.A. TROÇO IC2 – BATALHA SUL / PORTO (IC1)

PLANO DE ACÇÃO

ÍNDICE GERAL

<u>1</u>	INTRODUÇÃO	7
1.1	IDENTIFICAÇÃO DA ENTIDADE COMPETENTE PELA ELABORAÇÃO DO PLANO E SUA EXECUÇÃO	7
1.2	EQUIPA TÉCNICA E PERÍODO DE ELABORAÇÃO DO ESTUDO	8
<u>2</u>	ENQUADRAMENTO LEGISLATIVO	9
2.1	DEFINIÇÕES APLICÁVEIS	11
2.2	VALORES LIMITE DE EXPOSIÇÃO	12
<u>3</u>	DESCRIÇÃO DA GIT	16
<u>4</u>	RESULTADOS DO MAPA DE RUÍDO REFERENTE AO ANO DE 2006	19
4.1	Descrição dos modelos utilizados	19
4.1	1 NORMAS	19
4.1	2 EQUIPAMENTOS	19
4.2	REFORMULAÇÃO DO MAPA ESTRATÉGICO DE RUÍDO	19
4.3	VALIDAÇÃO DO MODELO	24
4.3	3.1 Objectivo da validação	24
4.4	AVALIAÇÃO DO NÚMERO ESTIMADO DE PESSOAS EXPOSTAS AO RUÍDO	27
4.5	IDENTIFICAÇÃO DE SITUAÇÕES A SER CORRIGIDAS	33
<u>5</u>	MEDIDAS DE REDUÇÃO DO RUÍDO IMPLEMENTADAS E PROJECTOS EM CURSO	41
<u>6</u>	ACÇÕES PREVISTAS PARA UM HORIZONTE DE CINCO ANOS E ESTRATÉGIAS A LONGO AZO	44
<u>FN</u>	AZO	44
<u>7</u>	ANÁLISE DE CUSTOS	50
<u>8</u>	INFORMAÇÃO AO PÚBLICO	51
<u>9</u> DF	MEDIDAS PREVISTAS PARA AVALIAR A IMPLEMENTAÇÃO E OS RESULTADOS DO PLAN	<u>0</u>

<u>10</u>	NOTAS FINAIS	53
11	DOCUMENTAÇÃO CONSULTADA	54

ÍNDICE DE QUADROS

Quadro 1.1 - Equipa tecnica	8
Quadro 2.1 - Valores limite de exposição estabelecidos no RGR	13
Quadro 2.2 - Zonamento acústico e limites de exposição	14
Quadro 3.1 - Parâmetros utilizados no modelo de cálculo – Tráfego rodoviário	17
Quadro 4.1 - Comparação dos valores de TMDA em 2006 e 2012	20
Quadro 4.2 - TMH para 2012 nos troços em que se verificaram diferenças significativas	21
Quadro 4.3 - Informação recolhida durante os levantamentos de campo (2013)	22
Quadro 4.4 - Comparação entre os valores medidos e os valores calculados nos troços em qu	ue
não houve alterações	24
Quadro 4.5 - Comparação entre os valores medidos e os valores calculados (2013)	26
Quadro 4.6 - População estimada (em centenas) exposta a diferentes gamas de valores de L	den
a 4 m de altura e na "fachada mais exposta"	28
Quadro 4.7 - População estimada (em centenas) exposta a diferentes gamas de valores de L	_n a
4 m de altura e na "fachada mais exposta"	28
Quadro 4.8 - Área total (em km²), número estimado de habitações e população exposta a	
diferentes gamas de valores de L _{den} a 4 m de altura e na "fachada mais exposta"	29
Quadro 4.9 - População residente nos concelhos atravessados pelo IC2 – Batalha Sul/Porto e	∍m
2001 e 2011	30
Quadro 4.10 - Variação da população residente ao nível da freguesia	31
Quadro 4.11 - Zonas do IC2 com níveis sonoros superiores aos limites regulamentares	33
Quadro 5.1 - Barreiras acústicas já instaladas no IC2 Batalha Sul/Porto	41
Quadro 6.1 – Barreiras acústicas projectadas	45
Quadro 6.2 - População estimada (em centenas) exposta a diferentes gamas de valores de L	den
a 4 m de altura e na "fachada mais exposta"	48
Quadro 6.3 - População estimada (em centenas) exposta a diferentes gamas de valores de L	_n a
4 m de altura e na "fachada mais exposta"	48
Quadro 6.4 - Área total (em km²), número estimado de habitações e população exposta a	
diferentes gamas de valores de L _{den} a 4 m de altura e na "fachada mais exposta"	49
Quadro 7.1 – Custos associados à implementação de pavimento pouco ruidoso	50

ÍNDICE DE FIGURAS

Figura 5.1 - Barreira Acústica 11 do troço IC2 – Variante da Batalha	42
Figura 5.2 - Barreiras Acústicas 1 e 2 do troço IC2 - IC36/#N109	42
Figura 5.3 - Barreira Acústica 3 do troço IC2 - IC36/EN109	43
Figura 5.4 - Barreira Acústica 4 do troço IC2 - IC36/EN109	43

ESTRADAS DE PORTUGAL, S.A. TROÇO IC2 – BATALHA SUL / PORTO (IC1)

PLANO DE ACÇÃO

1 INTRODUÇÃO

O presente documento constitui o Plano de Acção do troço IC2 – Batalha Sul / Porto (IC1), elaborado para a EP - Estradas de Portugal, S.A.

Entre Outubro de 2008 e Agosto de 2009, foram elaborados os mapas estratégicos de ruído do troço acima referido, tendo sido avaliada a exposição ao ruído na zona envolvente desta grande infra-estrutura de transporte rodoviário. Os mapas estratégicos de ruído foram aprovados pela Agência Portuguesa do Ambiente (referência 0975/10/DACAR-DAR, de 10/08/2010). No capítulo 4 é efectuada uma síntese da informação analisada.

O presente Plano de Acção pretende dar cumprimento ao Decreto-Lei n.º 146/2006 de 31 de Julho, que transpõe a Directiva Comunitária n.º 2002/49/CE, de 25 de Junho, do Parlamento Europeu e do Conselho, relativa à avaliação e gestão do ruído ambiente.

Os planos de acção têm como objectivo identificar e caracterizar as zonas de conflito, nas quais ocorrem excedências dos valores limites, legalmente estabelecidos, e definir as medidas de minimização necessárias ao cumprimento da legislação.

O trabalho foi desenvolvido de acordo com a legislação em vigor, nomeadamente com o Decreto-Lei n.º 9/2007, de 17 de Janeiro, que aprova o Regulamento Geral de Ruído (RGR), e pelo Decreto-Lei n.º 146/2006, de 31 de Julho.

Foi ainda considerado o documento "Directrizes para Elaboração de Mapas de Ruído. Versão 3", de Dezembro de 2011, da Agência Portuguesa do Ambiente.

1.1 Identificação da entidade competente pela elaboração do plano e sua execução

A entidade competente pela elaboração do Plano de Acção e sua execução é a EP - Estradas de Portugal, S.A.

1.2 Equipa técnica e período de elaboração do estudo

O presente Estudo é da responsabilidade da PROCESL - Engenharia Hidráulica e Ambiental, S.A., tendo sido elaborado entre Fevereiro de 2012 e Novembro de 2013.

A equipa técnica responsável pelo estudo é apresentada no Quadro 1.1.

Quadro 1.1 - Equipa técnica

NOME	VÍNCULO À PROCESL	FUNÇÃO
Eng.ª Ana Filipa Ferraz	Permanente	Coordenação do estudo
Eng.º Nuno Miguel Leandro	Permanente	Apoio à coordenação
Eng.º Rui Ribeiro	Consultor	Direcção Técnica do estudo
Eng.º José Silva	Consultor	Técnico

2 ENQUADRAMENTO LEGISLATIVO

O Decreto-Lei n.º 9/2007, de 17 de Janeiro, e o Decreto-Lei n.º 146/2006, de 31 de Julho, determinam que compete às entidades gestoras ou concessionárias de infraestruturas de transporte rodoviário elaborar e rever os mapas estratégicos de ruído e os planos de acção das grandes infra-estruturas de transporte rodoviário.

De acordo com o Decreto-Lei n.º 146/2006, de 31 de Julho, os Planos de Acção devem incluir, no mínimo os seguintes elementos:

- Uma descrição da grande infra-estrutura de transporte rodoviário, tendo em conta outras fontes de ruído: localização, dimensão e dados sobre o tráfego;
- Uma caracterização das suas imediações: zonas urbanas, outras informações sobre a utilização do solo;
- A entidade competente pela elaboração do plano e as entidades competentes pela execução de eventuais medidas de redução de ruído já em vigor e das acções previstas;
- O enquadramento jurídico;
- Os valores limite existentes no Regulamento Geral do Ruído;
- Um resumo dos dados que lhes dão origem, os quais se baseiam nos resultados dos mapas estratégicos de ruído;
- Métodos de cálculo ou de medição utilizados;
- Uma avaliação do número estimado de pessoas expostas ao ruído, identificação de problemas e situações que necessitem de ser corrigidas;
- O número estimado de pessoas (em centenas) que vivem fora das aglomerações em habitações expostas a cada uma das seguintes gamas de valores de L_{den}, em dB(A), a uma altura de 4 m, na fachada mais exposta:

$$\begin{split} &55{<}L_{den}{\le}60;\\ &60{<}~L_{den}~{\le}65;\\ &65{<}~L_{den}~{\le}70;\\ &70{<}~L_{den}~{\le}75;\\ &L_{den}~{>}75. \end{split}$$

• O número estimado de pessoas (em centenas) que vivem fora das aglomerações em habitações expostas a cada uma das seguintes gamas de valores de L_n, em dB(A), a uma altura de 4 m, na fachada mais exposta:

 $45 < L_n \le 50$; $50 < L_n \le 55$; $55 < L_n \le 60$; $60 < L_n \le 65$; $65 < L_n \le 70$; $L_n > 70$.

- A área total (em quilómetros quadrados) exposta a valores de L_{den} superiores a 55 dB(A), 65 dB(A) e 75 dB(A), respectivamente. Deve indicar-se o número estimado de habitações (em centenas) e o número estimado de pessoas (em centenas) que vivem em cada uma dessas áreas;
- Os contornos correspondentes aos 55 dB(A) e 65 dB(A) são igualmente apresentados num ou mais mapas que incluem informações sobre a localização de zonas urbanas abrangidas pelas áreas delimitadas por esses contornos;
- Um registo das consultas públicas, organizadas de acordo com a legislação aplicável;
- Programas de controlo do ruído executados no passado e medidas de redução do ruído já em vigor e projectos em curso;
- Acções previstas pelas entidades competentes para os cinco anos seguintes, incluindo quaisquer acções para a preservação de zonas tranquilas;
- Estratégia a longo prazo;
- Informações financeiras (se disponíveis): orçamentos, avaliação custo-eficácia, avaliação custo-benefício;
- Medidas previstas para avaliar a implementação e os resultados do plano de acção;
- Estimativas em termos de redução do número de pessoas afectadas (incomodadas, que sofram de perturbações do sono ou outras);

• Um resumo do plano de acção, com 10 páginas no máximo, que abranja todos os aspectos relevantes referidos anteriormente. O mesmo diploma refere que, as acções que as autoridades pretendam desenvolver no âmbito das suas competências podem incluir: planeamento do tráfego, ordenamento do território, medidas técnicas na fonte de ruído, selecção de fontes menos ruidosas, redução de ruído no meio de transmissão, medidas ou incentivos reguladores ou económicos.

2.1 Definições aplicáveis

As definições e os parâmetros de caracterização acústica com interesse para o presente estudo, de acordo com a legislação em vigor, são os seguintes:

- Avaliação: a quantificação de um indicador de ruído ou dos efeitos a ele associados;
- Efeitos prejudiciais: os efeitos nocivos para a saúde e bem-estar humanos;
- Grande infra-estrutura de transporte rodoviário: o troço ou troços de uma estrada municipal, regional, nacional ou internacional, identificados por um município ou pela EP – Estradas de Portugal, EPE, onde se verifiquem mais de três milhões de passagens de veículos por ano;
- <u>Indicador de ruído</u>: um parâmetro físico-matemático para a descrição do ruído ambiente que tenha uma relação com um efeito prejudicial;
- <u>Indicador de ruído diurno-entardecer-nocturno (L_{den})</u>: o indicador de ruído, expresso em dB(A), associado ao incómodo global, dado pela expressão:

$$L_{den} = 10 \times \log \frac{1}{24} \left[13 \times 10^{\frac{Ld}{10}} + 3 \times 10^{\frac{Le+5}{10}} + 8 \times 10^{\frac{Ln+10}{10}} \right]$$

- <u>Indicador de ruído diurno (L_d)</u>: o nível sonoro médio de longa duração, determinado durante uma série de períodos diurnos representativos de um ano;
- <u>Indicador de ruído do entardecer (L_e)</u>: o nível sonoro médio de longa duração, determinado durante uma série de períodos do entardecer representativos de um ano;

- <u>Indicador de ruído nocturno (L_n)</u>: o nível sonoro médio de longa duração, determinado durante uma série de períodos nocturnos representativos de um ano;
- Mapa estratégico de ruído: um mapa para fins de avaliação global da exposição ao ruído ambiente exterior, em determinada zona, devido a várias fontes de ruído, ou para fins de estabelecimento de previsões globais para essa zona;
- <u>Período de referência</u>: o intervalo de tempo a que se refere um indicador de ruído, de modo a abranger as actividades humanas típicas, delimitado nos seguintes termos (período diurno: das 7 às 20 horas; período do entardecer: das 20 às 23 horas; período nocturno: das 23 às 7 horas);
- <u>Planeamento acústico</u>: o controlo do ruído futuro através da adopção de medidas programadas tais como o ordenamento do território, a engenharia de sistemas para a gestão do trafego, o planeamento da circulação e a redução de ruído por medidas adequadas de isolamento sonoro e de controlo do ruído;
- <u>Planos de acção</u>: planos destinados a gerir o ruído no sentido de minimizar os problemas dele resultantes, nomeadamente pela redução do ruído;
- <u>Receptor sensível</u>: edifício habitacional, escolar, hospitalar ou similar ou espaço de lazer, com utilização humana;
- <u>Ruído ambiente</u>: ruído global, observado numa dada circunstância num determinado instante, devido ao conjunto das fontes sonoras que fazem parte da vizinhança próxima ou longínqua do local considerado;
- Valor limite: o valor de L_{den} ou L_n que, caso seja excedido, dá origem a adopção de medidas de redução do ruído por parte das entidades competentes.

2.2 Valores limite de exposição

Os valores limite de exposição encontram-se definidos no Decreto-Lei n.º 9/2007, de 17 de Janeiro, e são estipulados em função da classificação de uma zona como mista ou sensível.

Até à classificação das zonas sensíveis e mistas para efeitos de verificação do valor limite de exposição, aplicam-se aos receptores sensíveis os valores limite de L_{den} igual

ou inferior a 63 dB(A) e L_n igual ou inferior a 53 dB(A). Os valores limite a considerar nas diferentes situações são apresentados no quadro seguinte.

Quadro 2.1 - Valores limite de exposição estabelecidos no RGR

ZONA	L _{den}	L _n
Sensível	55 dB(A)	45 dB(A)
Mista	65 dB(A)	55 dB(A)
Não classificada	63 dB(A)	53 dB(A)

De referir ainda que, as zonas sensíveis em cuja proximidade exista em exploração, à data da entrada em vigor do referido Regulamento, uma grande infra-estrutura de transporte, não devem ficar expostas a ruído ambiente exterior superior a 65 dB(A), expresso pelo indicador L_{den} , e superior a 55 dB(A), expresso pelo indicador L_{n} .

Os receptores sensíveis isolados não integrados em zonas classificadas, por estarem localizados fora dos perímetros urbanos, são equiparados, em função dos usos existentes na sua proximidade, a zonas sensíveis ou mistas, para efeitos de aplicação dos correspondentes valores limite mencionados.

O IC2 atravessa diversos concelhos, com diferentes classificações de zonamento acústico. De acordo com a informação disponibilizada pelas Câmaras Municipais, a classificação de zonamento acústico e respectivos limites de exposição aplicados aos receptores sensíveis são os que se indicam no quadro que se segue. Excepção será feita aos receptores localizados até 100 metros de distância da via, nos concelhos em que já foi efectuado o respectivo zonamento acústico, aos quais se aplicam os valores limite de 65 e 55 dB(A), independentemente da sua classificação acústica.

Quadro 2.2 - Zonamento acústico e limites de exposição

NA	Zona Sensível	Zona Mista	Ausência de Zonamento / Ausência de Informação
Município	L _{den} ≤ 55 dB(A);	L _{den} ≤ 65 dB(A);	L _{den} ≤ 63 dB(A);
	$L_n \leq 45 \text{ dB(A)}$	$L_n \leq 55 \text{ dB(A)}$	$L_n \leq 53 \text{ dB(A)}$
Batalha	-	-	Km110+779 a Km116+600
Leiria	-	-	Km116+600 a Km136+700
Pombal ⁽¹⁾	-	Km136+800 a Km163+600	-
Soure	-	-	Km163+600 a Km167+800
Condeixa-a- Nova	-	Km167+800 a Km177+000	-
Coimbra	-	Km177+000 a Km201+900	-
	Km200+900 a Km201+100		
	Km202+750 a Km202+850		
	Km202+950 a Km203+100		
	Km207+800 a Km207+900		-
	Km208+300 a Km210+350		
Mealhada ⁽²⁾	Km213+400 a Km213+450	Km201+900 a Km203+300	
	Km214+500 a Km214+700		
	Km214+500 a Km214+700		
	Km215+200 a Km215+300		
	Km219+800 a Km219+900		-
	Km220+300 a Km220+350		

Manietrie	Zona Sensível	Zona Mista	Ausência de Zonamento / Ausência de Informação
Município	$L_{den} \le 55 dB(A);$	L _{den} ≤ 65 dB(A);	L _{den} ≤ 63 dB(A);
	$L_n \leq 45 \text{ dB(A)}$	$L_n \leq 55 \text{ dB(A)}$	$L_n \leq 53 \text{ dB(A)}$
	Km213+400 a Km213+450		
	Km214+500 a Km214+700		
Anadia	Km214+500 a Km214+700	Km211+800 a	
Allaula	Km215+200 a Km215+300	Km223+450	-
	Km219+800 a Km219+900		
	Km220+300 a Km220+350		
Águeda	-	-	Km223+600 a Km244+900
Albergaria-a- Velha	-	Km242+800 a Km255+800	-
Oliv. de Azeméis	-	Km255+800 a Km269+200	-
S. João da Madeira	Km269+700 a Km273+700	Km269+200 a Km273+700	-
Sta Maria da Feira	-	-	Km273+700 a Km288+800
Vila Nova de	Km289+450 a Km289+550	Km287+550 a	
Gaia	Km293+500 a Km297+277	294+277	-

^{(1) -} o Regulamento do PDM de Pombal define que todas as zonas não classificadas são equiparadas a zonas mistas;

⁻ no município da Mealhada, entre o Km203+300 a 206+600, existe uma zona de carácter industrial, sem receptores sensíveis, pelo que não se verifica a necessidade de respeitar um limite legal.

3 DESCRIÇÃO DA GIT

O Lanço Batalha Sul – Porto (IC1) do Itinerário Complementar n.º 2 (IC2), com aproximadamente 182 km de extensão, desenvolve-se a partir da Batalha até Vila Nova de Gaia, atravessando 4 distritos (Leiria, Coimbra, Aveiro e Porto), 14 concelhos (Batalha, Leiria, Pombal, Soure, Condeixa-a-Nova, Coimbra, Mealhada, Anadia, Águeda, Albergaria-a-Velha, Oliveira de Azeméis, São João da Madeira, Santa Maria da Feira e Vila Nova de Gaia) e 97 freguesias.

Em termos de ruído, o troço afecta zonas com ocupação habitacional bastante densa (onde se podem destacar, entre outras, as cidades de Leiria, Pombal, Condeixa-a-Nova, Coimbra, Águeda, Albergaria-a-Velha, Oliveira de Azeméis e na parte final desde Lourosa (Santa Maria da Feira) até Vila Nova de Gaia) intercaladas com zonas também de ocupação sensível ainda que com menor densidade populacional.

Existem ainda, ao longo do traçado, zonas onde a densidade de receptores sensíveis é reduzida e/ou onde o uso do solo é destinado a actividades industriais.

Importa referir que o parque habitacional nas zonas em estudo é bastante heterogéneo, existindo edifícios de habitação unifamiliar com 1, 2 e 3 pisos, edifícios de habitação multifamiliar com vários pisos, edifícios não habitados (de serviços, industriais ou desportivos), religiosos, escolares, etc., que foram identificados *in situ* aquando da realização dos levantamentos de campo.

No que se refere aos perfis transversais tipo, o IC2 é também uma via bastante heterogénea apresentando, desta forma, zonas necessariamente diferenciadas, nomeadamente:

- 1. Perfil transversal 2x1 vias;
- 2. Perfil transversal 1x1 via num dos sentidos e 1x2 no outro sentido;
- 3. Perfil transversal 2x2 vias (tipo auto-estrada).

A existência de zonas de perfil transversal 1 e 2 deve-se, fundamentalmente, ao facto de, actualmente, o IC2 se "sobrepor", em vários troços, à Estrada Nacional 1 (EN1) sendo estes os dois tipos de perfis predominantes. De referir ainda que existem ao longo do traçado, em especial junto das aglomerações populacionais mais densas, diversas rotundas e semáforos. O perfil transversal tipo 3 apenas ocorre esporadicamente junto dos principais aglomerados populacionais.

Por outro lado, existem, ao longo da via, camadas de desgaste diferenciadas em termos de emissão sonora (diferentes tipos e diferentes estados de conservação), que foram objecto de caracterização específica visando a sua correcta calibração acústica nos modelos de cálculo elaborados.

Para efeitos de elaboração do MER deste troço do IC2 foram considerados valores de Tráfego Médio Diário Anual (TMDA) relativos ao ano de 2006. Apresenta-se, no quadro seguinte, a distribuição horária do tráfego pelos três períodos de referência indicados no Decreto-Lei n.º 9/2007, de 17 de Janeiro, bem como a sua composição.

Quadro 3.1 - Parâmetros utilizados no modelo de cálculo – Tráfego rodoviário

	IC2 – BATALHA SUL / PORTO (IC1)									
	Tráfego Médio Horário (TMH) em veículos/hora ⁽¹⁾									
Ano	Posto de Contagem EP	Período	Período do Entardecer		Período Nocturno		Ligeiros	Pesados		
	Contageni Lr	Ligeiros	Pesados	Ligeiros	Pesados	Ligeiros	Pesados			
	481U – km 116,9	1 411	356	954	241	360	86	60	50	
	4740 – km 144	954	255	645	172	242	64	90	80	
	474A – km 155	749	234	506	158	189	59	90	80	
	4190 – km 173,2	492	205	333	139	126	53	90	80	
	419B – km 183,9	1 301	105	880	71	338	25	90	80	
	400U – km 195,4	2 552	170	1 726	115	666	40	110	100	
	AO19 – km 204,2	824	127	558	86	231	27	90	80	
2006	2940 – km 212,4	840	120	568	81	211	29	80	70	
	289B – km 225,8	424	95	287	64	106	23	80	70	
	2870 – km 237,4	767	76	519	51	193	28	70	60	
	270U – km 252,5	822	117	556	79	206	27	70	60	
	2650 – km 264,2	814	102	551	69	205	24	100	90	
	2600 – km 271	1 069	116	723	79	273	27	80	70	
	AO16 – km 278,85	1 474	118	997	80	535	27	80	70	
	2450 – km 288,6	1 280	95	865	64	326	21	70	60	

TMH determinado a partir dos volumes de tráfego médio diário anual (TMDA) disponibilizados pela Concessionária da via, distribuídos pelas 13 horas do período diurno, 3 horas do período do entardecer e 8 horas do período nocturno

Relativamente às velocidades médias de circulação, estas variaram ao longo do traçado, de acordo com o perfil transversal da via, as zonas de aceleração e desaceleração, nomeadamente em locais onde ocorre a existência de rotundas, sinalização vertical condicionadora de velocidade e semáforos. De um modo geral, foram consideradas velocidades médias compreendidas entre os 60 km/h e os 110 km/h.

Acresce referir que a diferença de volumes de tráfego, diferentes camadas de desgaste da via, desigual orografia do terreno, heterogeneidade de densidade habitacional ao longo do traçado em estudo e a necessidade de caracterização da zona envolvente da via até às isófonas de L_{den} = 55 dB(A) e L_n = 45 dB(A), conduziria, em certos locais, ao mapeamento de níveis sonoros até, aproximadamente, 500 m para cada lado da via.

No entanto, por indisponibilidade de cartografia suficientemente abrangente à data da presente análise, apenas foram mapeados os níveis sonoros até cerca de 300/350 m para cada lado da via.

Assim sendo, no sentido de colmatar esta lacuna foi efectuada uma análise detalhada das zonas localizadas fora do espaço mapeado, com base em levantamentos de campo, apoiados em fotografia aérea actualizada de forma a determinar e contabilizar os receptores sensíveis que se encontravam fora da cartografia.

4 RESULTADOS DO MAPA DE RUÍDO REFERENTE AO ANO DE 2006

4.1 Descrição dos modelos utilizados

4.1.1 Normas

O método de cálculo utilizado na elaboração dos mapas de ruído, dado tratar-se de uma via de tráfego rodoviária foi o francês "NMPB-Routes-96 (SETRA-CERTU-LCPC-CSTB)", publicado no "Arrêté, du 5 mai 1995 relatif au bruit des infraesctutures routiéres, Journal Officiel du 10 mai 1995, article 6" e na norma francesa "XPS 31-133". Este método de cálculo corresponde ao indicado no Decreto-Lei n.º 9/2007, de 17 de Janeiro e no Decreto-Lei n.º 146/2006, de 31 de Julho.

4.1.2 Equipamentos

Para a elaboração dos mapas de ruído foi utilizado o *software* IMMI 2010-2 – *Wölfel Software GmbH* que permite a elaboração de mapas de ruído, de acordo com o exigido no Regulamento Geral do Ruído (Decreto-Lei n.º 9/2007, de 17 de Janeiro), e com o previsto na Directiva Europeia sobre a Avaliação e Gestão do Ruído Ambiente (Directiva 2002/49/CE de 25 de Junho).

4.2 Reformulação do Mapa Estratégico de Ruído

O troço do IC2 considerado para efeitos de Plano de Acção apresenta algumas diferenças relativamente ao do MER de 2006, quer em termos de extensão quer em termos de traçado e de valores de tráfego, pelo que houve que actualizar parte do MER aprovado anteriormente.

O lanço agora considerado apresenta uma extensão inferior ao de 2006 dado que o troço compreendido entre a EN17 e a EN341, em Coimbra, com cerca de 3,5 km passou para a jurisdição da respectiva Câmara Municipal. Constatou-se, além disso que o troço a Norte do nó de Carvalhos, com cerca de 6,3 km não se encontra sob jurisdição da EP, fazendo parte da Concessão da Brisa Auto-estradas de Portugal, pelo que a zona a Norte daquele nó foi retirada do MER.

Por outro lado, identificaram-se algumas incorrecções no traçado considerado em 2006, designadamente num troço de cerca de 4km na Zona Industrial da Pedrulha, (km 190+000 – km 194+000) onde tinham sido mapeadas a Rua Manuel de Almeida e a Rua da Constituição em vez do IC2 e na zona de Barrô (11 km), entre os km 226+000 e

237+000, onde o antigo traçado foi substituído pela Variante de Águeda. Assim sendo, houve que corrigir o MER naqueles troços.

Por último identificaram-se ainda, nalguns troços, diferenças nos valores de TMDA de 2012, relativamente aos de 2006, pelo que houve que reformular o MER também nestes troços. Os valores de TMDA para 2012 são apresentados no quadro seguinte.

Quadro 4.1 - Comparação dos valores de TMDA em 2006 e 2012

Posto de			- ~	TM	DA
Contagem	km início	km final	Extensão	2006	2012
481U	110,8	120,6	9,8	30117	20654
4740	120,7	151,3	30,6	20608	17032
474A	151,3	164,9	13,6	16748	11638
4190	164,9	174,9	9,9	11919	10787
419B	174,9	187,0	12,1	24036	20025
400U	190,0	197,0	7,0	46567	37211
A019	197,0	209,8	12,8	16360	13541
2940	209,8	218,9	9,01	16338	13541
289B	218,9	236,7	17,9	8824	6722
2870	236,7	245,1	8,4	14434	13258
270U	245,1	259,9	14,8	15979	12298
2650	259,9	264,1	4,2	15592	10807
2600	264,1	271,6	7,5	20214	17650
A016	271,6	288,5	16,9	28425	18789
2450	288,5	296,1	7,6	23440	14909

Apresenta-se em seguida a distribuição horária do tráfego para 2012 pelos três períodos de referência indicados no Decreto-Lei n.º 9/2007, de 17 de Janeiro, bem como a sua composição, nos troços em que se verificam diferenças significativas.

Quadro 4.2 - TMH para 2012 nos troços em que se verificaram diferenças significativas

	IC2 – BATALHA SUL / PORTO (IC1)									
	Tráfego Médio Horário (TMH) em veículos/hora									
Ano	Posto de	Período	Período diurno Períod Entard		Período N		Nocturno			
	Contagem EP	Ligeiros	Pesados	Ligeiros	Pesados	Ligeiros	Pesados			
	481U – km 116,9	967	244	654	165	247	59			
	474A – km 155	520	163	351	110	131	41			
2012	400U – km 195,4	2040	136	1380	92	532	32			
	AO16 – km 278,85	974	78	659	53	354	18			
	2450 – km 288,6	814	60	550	41	207	13			

A metodologia adoptada para a elaboração do Mapa Estratégico de Ruído dos troços a corrigir é idêntica à do MER anterior, seguindo os pressupostos estabelecidos no documento "Directrizes para Elaboração de Mapas de Ruído", da Agência Portuguesa da Ambiente (APA) e no documento "Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise Exposure, version 2", (GPG-2).

No âmbito da presente reformulação foram efectuados novos levantamentos de campo, na área de influência dos troços de via de interesse, nos dias 13 e 14 de Novembro de 2013, tendo em vista a validação do modelo tridimensional gerado para previsão dos níveis de ruído ambiente.

Para a caracterização acústica da via em análise e correcta calibração dos correspondentes modelos de cálculo, foram realizadas campanhas de medição *in situ* dos níveis sonoros gerados pelo tráfego em circulação, com recolha simultânea dos principais parâmetros que concorrem para a obtenção das condições acústicas observadas nas proximidades da via (volumes de tráfego, velocidades de circulação e características da via, com realce para o tipo de pavimento - camada de desgaste).

Nas medições acústicas foi utilizado um sonómetro integrador Brüel & Kjaer 2260, verificado por laboratório acreditado, bem como equipamento para registo das condições atmosféricas observadas durante as medições acústicas (velocidade do vento, temperatura e humidade relativa do ar). As amostragens realizadas tiveram uma duração igual ou superior a 30 minutos, com condições meteorológicas de tempo

seco e vento fraco, de acordo com a normalização aplicável, tendo sido consideradas válidas. Os resultados das medições acústicas realizadas são apresentados no Quadro 4.3.

Além da caracterização acústica, procedeu-se à recolha de informação relativa à topografia e planimetria dos locais atravessados, a ser usada para confirmação/aferição da modelação orográfica do terreno e planimetria, dados essenciais para a correta calibração dos modelos de cálculo utilizados para a elaboração dos Mapas Estratégicos de Ruído, bem como para a sua validação.

Quadro 4.3 - Informação recolhida durante os levantamentos de campo (2013)

Medição Nº	Local de Medição		Tráfego Circulante		Velocidade média (km/h)	Níveis sonoros Medidos
	PK do IC2	Distância ao IC2	Ligeiros/h	Pesados/h	, ,	(LAeq em dB(A))
N1	≈226+430 (IC2), a nascente	≈10m	456	144	100/80	67,6
N2	≈228+230 (IC2), a nascente	≈15m	580	130	90/70	73,6
N3	≈231+175 (IC2), a nascente	≈20m	498	84	100/800	68,1
N4	≈234+290 (IC2), a nascente	≈20m	912	144	100/80	65,8
N5	≈237+480 (IC2), a nascente	≈10m	185	126	100/80	65,3
N6	≈191+660 (IC2), a nascente	≈10m	3750	210	100/80	77,9
N7	≈192+285 (IC2), a poente	≈10m	4734	186	90/70	82,8
N8	≈115+145 (IC2), a nascente	≈15m	948	132	90/70	68.6
N9	≈115+145 (IC2), a poente (B2)	≈85m	*	*	*	58.3
N10	≈122+850 (IC2), a nascente (B3)	≈45m	*	*	*	55.1

Medição Nº	Local de Medição		Tráfego Circulante		Velocidade média (km/h)	Níveis sonoros Medidos
	PK do IC2	Distância ao IC2	Ligeiros/h	Pesados/h	, , ,	(LAeq em dB(A))
N10.1	≈122+870 (IC2), a nascente (B3)	≈40m	*	*	*	56.2
N10.2	≈123+150 (IC2), a nascente (B3)	≈40m	*	*	*	61.8
N11	≈125+375 (IC2), a nascente (Reclamação de ruído)	≈10m	*	*	*	76.2
N12	≈157+075 (IC2), a nascente	≈5m	852	156	90/70	73.2
N13	≈191+550 (IC2), a poente (Reclamação de ruído)	≈20m	*	*	*	59.3
N14	≈191+725 (IC2), a poente (Reclamação de ruído)	≈30m	*	*	*	58.7
N15	≈195+200 (IC2), a poente	≈5m	1680	216	100/80	75.2
N16	≈191+725 (IC2), a nascente (Reclamação de ruído)	≈20m	1440	135	100/80	70.1
N17	≈278+525 (N1), a poente	≈5m	552	96	70/50	71.3
N18	≈286+225 (N1), a poente	≈10m	1044	144	70/50	71.5
N19	≈291+550 (N1), a nascente	≈10m	1088	48	70/50	68.1

^{*} Impossibilidade de medição e contagem em simultâneo

O resultado desta reformulação é apresentado nas peças desenhadas.

4.3 Validação do modelo

4.3.1 Objectivo da validação

Em 2009, aquando da elaboração do MER, efectuou-se uma comparação entre os valores medidos e simulados, para um conjunto de pontos receptores seleccionados para o efeito, de forma a avaliar-se a representatividade do MER face aos níveis sonoros registados nos locais por ele atravessados. Os diferenciais obtidos eram inferiores a ±2 dB (A), pelo que se consideraram válidos os resultados mostrados no MER.

Nos troços em que não houve alterações significativas em termos de tráfego e/ou de traçado aqueles resultados permanecem ainda válidos, podendo ser usados como base para a elaboração do Plano de Acção. Os resultados da comparação entre os valores de L_{den} e L_n, medidos e calculados para os pontos seleccionados, bem como a localização dos mesmos, são apresentados no Quadro 4.4.

Nas zonas onde foi necessário corrigir o MER de 2009, foi efectuada uma nova validação, usando-se para isso os resultados do trabalho de campo agora efectuado. Os resultados da comparação efectuada entre os valores medidos e simulados para estas zonas são apresentados no Quadro 4.5.

Quadro 4.4 - Comparação entre os valores medidos e os valores calculados nos troços em que não houve alterações

	Local de Medição		Nível Sonoro (dB(A))			
Medição Nº	PK do IC2	Distânci a ao IC2	Valor	VM Valor Medido	VC - VM	
M4	≈126+180 (IC2), a sul	≈10m	74	73,8	0,2	
M5	≈128+855 (IC2), a sul	≈15m	72,4	72,7	-0,3	
M6	≈131+385 (IC2), a nascente	≈15m	72,6	72,0	0,6	
M7	≈135+570 (IC2), a poente	≈9m	71,9	72,6	-0,7	
M8	≈141+720 (IC2), a poente	≈15m	68,7	68,5	0,2	
M9	≈144+225 (IC2), a sul	≈9m	71	70,8	0,2	
M10	≈147+590 (IC2), a poente	≈8m	72,3	72,8	-0,5	

	Local de Medição		Nível Sonoro (dB(A))		
Medição Nº	PK do IC2	Distânci a ao IC2	VC Valor Calculado	VM Valor Medido	VC - VM
M11	≈151+060 (IC2), a nascente	≈8m	74,1	74,1	0
M15	≈166+790 (IC2), a nascente	≈5m	72,8	73,6	-0,8
M16	≈170+650 (IC2), a poente	≈5m	74,9	76,2	-1,3
M16.1	≈172+360 (IC2), a nascente	≈7m	74,1	74,1	0
M17	≈174+050 (IC2), a nascente	≈10m	72,2	73,2	-1
M18	≈178+980 (IC2), a norte	≈8m	73,8	74	-0,2
M19	≈183+235 (IC2), a poente	≈8m	76,4	76,6	-0,2
M20	≈184+815 (IC2), a sul	≈5m	76,8	76,3	0,5
M23	≈200+265 (IC2), a nascente	≈12m	70,3	70,2	0,1
M24	≈203+160 (IC2), a poente	≈12m	68,3	69	-0,7
M25	≈206+175 (IC2), a nascente	≈12m	69,5	68,3	1,2
M26	≈211+770 (IC2), a nascente	≈10m	70,3	70,2	0,1
M27	≈215+410 (IC2), a poente	≈20m	64,5	64,4	0,1
M28	≈220+150 (IC2), a nascente	≈18m	66,1	65,6	0,5
M29	≈223+605 (IC2), a poente	≈10m	66,5	66,5	0
M32	≈236+965 (IC2), a poente	≈52m	59	58,8	0,2
M33	≈240+920 (IC2), a nascente	≈20m	62,5	62,9	-0,4
M34	≈246+200 (IC2), a norte	≈49m	59,6	59,8	-0,2
M35	≈249+355 (IC2), a nascente	≈32m	61,9	62,5	-0,6
M36	≈252+935 (IC2), a nascente	≈60m	54,5	54,2	0,3
M37	≈256+700 (IC2), a poente	≈12m	66,8	66,8	0
M38	≈262+070 (IC2), a poente	≈55m	55,6	55,1	0,5
M39	≈266+330 (IC2), a nascente	≈17m	65,5	65,6	-0,1
M40	≈270+650 (IC2), a poente	≈12m	68,6	69,7	-1,1

Plano de Acção

Troço IC2 – Batalha Sul / Porto (IC1)

Quadro 4.5 - Comparação entre os valores medidos e os valores calculados (2013)

	Local de Me	dição	Nível Sonoro (dB(A))		
Medição Nº	PK do IC2	Distância ao IC2	VC Valor Calculado	VM Valor Medido	VC - VM
N1	≈226+430 (IC2), a nascente	≈10m	66.3	67.6	-1.3
N2	≈228+230 (IC2), a nascente	≈15m	71.5	73.4	-1.9
N3	≈231+175 (IC2), a nascente	≈20m	67.1	68.1	-1.0
N4	≈234+290 (IC2), a nascente	≈20m	66.7	65.8	0.9
N5	≈237+480 (IC2), a nascente	≈10m	65	65.3	-0.3
N6	≈191+660 (IC2), a nascente	≈10m	76	77.9	-1.9
N7	≈192+285 (IC2), a poente	≈10m	81	82.8	-1.8
N8	≈115+145 (IC2), a nascente	≈15m	69.5	68.6	0.9
N9	≈115+145 (IC2), a poente	≈85m	63.5	58.3	*
N10	≈122+850 (IC2), a nascente	≈45m	54.6	55.1	-0.5
N10.1	≈122+870 (IC2), a nascente	≈40m	54.4	56.2	-1.8
N10.2	≈123+150 (IC2), a nascente	≈40m	62.1	61.8	0.3
N11	≈125+375 (IC2), a nascente	≈10m	74.2	76.2	-2.0
N12	≈157+075 (IC2), a nascente	≈5m	71.6	73.2	-1.6
N13	≈191+550 (IC2), a poente	≈20m	58.2	59.3	-1.1

	Local de Medição		Nível Sonoro (dB(A))		
Medição Nº	PK do IC2	Distância ao IC2	VC Valor Calculado	VM Valor Medido	VC - VM
N14	≈191+725 (IC2), a poente	≈30m	60.3	58.7	1.6
N15	≈195+200 (IC2), a poente	≈5m	75.7	75.2	0.5
N16	≈191+725 (IC2), a nascente	≈20m	71.2	70.1	1.1
N17	≈278+525 (N1), a poente	≈5m	72.5	71.3	1.2
N18	≈286+225 (N1), a poente	≈10m	71.1	71.5	-0.4
N19	≈291+550 (N1), a nascente	≈10m	67.6	68.1	-0.5

^{*}Ponto de medição impossível de validar uma vez que a cartografia no modelo não está actualizada com o actual traçado do IC2

Face às diferenças determinadas entre valores medidos e calculados pode considerarse válido o MER reformulado e assim proceder-se à elaboração do respectivo Plano de Acção.

4.4 Avaliação do número estimado de pessoas expostas ao ruído

A avaliação da população exposta a diferentes níveis de ruído foi efectuada aquando da elaboração do mapa estratégico de ruído, seguindo a metodologia definida no documento "Directrizes para a Elaboração de Mapas de Ruído".

De salientar que, de acordo com o solicitado no parecer da Agência Portuguesa do Ambiente relativo ao MER deste troço do IC2 (Ref. 1251/9/DACAR-DAR), foram identificados os receptores que se encontravam fora da área cartografada no MER, mas ainda sob a influência sonora das classes $55 < L_{den} < 60$ dB(A) e $45 < L_n < 50$ dB(A), e recalculado o número de pessoas expostas para ambos os indicadores e de alojamentos expostos às diferentes gamas de valores de L_{den} . Seguindo a mesma metodologia os valores de população exposta foram agora recalculados sendo os resultados apresentados nos quadros seguintes.

Quadro 4.6 - População estimada (em centenas) exposta a diferentes gamas de valores de L_{den} a 4 m de altura e na "fachada mais exposta"

INTERVALOS DE EXPOSIÇÃO	POPULAÇÃO EXPOSTA ⁽¹⁾
dB(A)	x 10 ²
55 < L _{den} ≤ 60	200
60 < L _{den} ≤ 65	137
65 < L _{den} ≤ 70	90
70 < L _{den} ≤ 75	77
L _{den} > 75	10

⁽¹⁾ Números arredondados à centena mais próxima. Quando o valor é inferior a 50 arredondase para zero.

Quadro 4.7 - População estimada (em centenas) exposta a diferentes gamas de valores de L_n a 4 m de altura e na "fachada mais exposta"

INTERVALOS DE EXPOSIÇÃO	POPULAÇÃO EXPOSTA ⁽¹⁾
dB(A)	x 10 ²
45 < L _n ≤ 50	220
50 < L _n ≤ 55	176
55 < L _n ≤ 60	105
60 < L _n ≤ 65	98
65 < L _n ≤ 70	26
L _n > 70	2

⁽¹⁾ Números arredondados à centena mais próxima. Quando o valor é inferior a 50 arredondase para zero.

Quadro 4.8 - Área total (em km²), número estimado de habitações e população exposta a diferentes gamas de valores de L_{den} a 4 m de altura e na "fachada mais exposta"

NÍVEIS DE	ÁREA TOTAL ⁽¹⁾	NÚMERO ESTIMADO	POPULAÇÃO EXPOSTA ⁽²⁾
EXPOSIÇÃO dB(A)	(km²)	DE HABITAÇÕES ⁽²⁾ x 10 ²	x 10 ²
L _{den} > 75	4.6	4	10
L _{den} > 65	20.8	50	178
L _{den} > 55	68.5	160	515

⁽¹⁾ A área total objecto de análise é ≈ 108,2 km²

A análise dos Quadros acima permite concluir que cerca de 177 (cento e setenta e sete) centenas de pessoas encontravam-se expostas a valores de L_{den} acima do limite regulamentar aplicável ($L_{den} \leq 65 \text{ dB}(A)$) e que a situação se agrava quando se analisa o indicador L_n (associado à perturbação do sono), verificando-se que cerca de 231 (duzentas e trinta e uma) centenas de pessoas estavam expostas a valores L_n superiores ao limite máximo admissível ($L_n \leq 55 \text{ dB}(A)$) devido ao ruído de tráfego na via em análise.

Os Quadros 4.6 e 4.7 permitem ainda constatar que no ano 2006 cerca 77 (setenta e sete) centenas de pessoas estavam expostas a valores de 70 dB(A) < $L_{den} \le 75$ dB(A) e que cerca de 98 (noventa e oito) centenas de pessoas estavam expostas a valores 60 dB(A) < $L_n \le 65$ dB(A) (ultrapassagem até 10 dB(A) relativamente aos valores limite aplicáveis); estes Quadros permitem também identificar que cerca de 10 (centenas) centenas de pessoas estavam expostas a valores $L_{den} > 75$ dB(A) e que cerca de 26 (vinte e seis) centenas de pessoas estavam expostas a valores 65 dB(A) < $L_n \le 70$ dB(A) (ultrapassagem superior a 10 dB(A)).

Dado que foram já publicados os resultados definitivos dos Censos 2011, pelo Instituto Nacional de Estatística, foi efectuada uma comparação entre a população residente nos concelhos e freguesias atravessados pelo IC2 em 2001 e 2011 de forma a avaliarse da necessidade de efectuar uma nova estimativa da população exposta. Os resultados obtidos ao nível do concelho são apresentados no quadro seguinte.

⁽²⁾ Valores arredondados à centena mais próxima. Quando o valor é inferior a 50 é arredondado para zero.

Quadro 4.9 - População residente nos concelhos atravessados pelo IC2 – Batalha Sul/Porto em 2001 e 2011

CONCELHO	POPULAÇÃO 2001	POPULAÇÃO 2011	TAXA DE VARIAÇÃO (%)
Batalha	15002	15805	5,35
Leiria	119847	126897	5,88
Pombal	56299	55217	-1,92
Soure	20940	19245	-8,09
Condeixa-a-Nova	15340	17078	11,33
Coimbra	148443	143396	-3,4
Mealhada	20751	20428	-1,56
Anadia	31545	29150	-7,59
Águeda	49041	47729	-2,68
Albergaria-a-Velha	24638	25252	2,49
Oliveira de Azeméis	70721	68611	-2,98
S. João da Madeira	21102	21713	2,9
Santa Maria da Feira	135964	139312	2,46
Vila Nova de Gaia	288749	302295	4,69

Os resultados obtidos permitem concluir que na última década se registaram, como seria de esperar, acréscimos na população residente em parte dos concelhos atravessados pelo IC2 enquanto noutros se verificou um decréscimo nos valores da mesma. O resultado líquido desta variação mostra, no entanto, que a diferença entre a população total nos concelhos atravessados pela via entre 2001 e 2011 não é

suficiente para justificar uma reformulação integral do MER elaborado em 2009. Mostra-se ainda no Quadro 4.10, os resultados obtidos ao nível da freguesia.

Quadro 4.10 - Variação da população residente ao nível da freguesia

CONCELHO	FREGUESIA	POPULAÇÃO 2001	POPULAÇÃO 2011	TAXA DE VARIAÇÃO (%)
Batalha	Batalha	7522	8548	13,64
Datailia	Golpilheira	1609	1528	-5,03
	Azóia	2269	2276	0,31
	Boa Vista	1926	1745	-9,4
	Barreira	3123	4102	31,35
	Colmeias	3717	3278	-11,81
	Leiria	13946	14909	6,91
Leiria	Maceira	9981	9914	-0,67
	Marrazes	20442	22528	10,2
	Milagres	2961	3071	3,71
	Parceiros	3304	4664	41,16
	Pousos	7326	9763	33,27
	Bidoeira de Cima	2073	2250	8,54
	Condeixa-a-Nova	3980	5136	29,05
Condeixa-a-Nova	Condeixa-a-Velha	3318	3472	4,64
Condeixa-a-Nova	Ega	2882	2835	-1,63
	Furadouro	223	206	-7,62
	Albergaria-a-Velha	7421	8528	14,92
Allaguagia - Malla	Alquerubim	2390	2381	-0,38
Albergaria-a-Velha	Branca	5500	5621	2,2
	Valmaior	2022	2040	0,89

CONCELHO	FREGUESIA	POPULAÇÃO 2001	POPULAÇÃO 2011	TAXA DE VARIAÇÃO (%)
S. João da Madeira	S. João da Madeira	21102	21713	2,9
	Argoncilhe	8605	8420	-2,15
	Arrifana	6544	6551	0,11
	Escapães	3028	3309	9,28
	Fiães	8754	7991	-8,72
	Lourosa	9204	8636	-6,17
	Milheirós de Poiares	3859	3791	-1,76
Santa Maria da	Mozelos	6502	7142	9,84
Feira	Nogueira da Regedoura	5026	5790	15,2
	Pigeiros	1369	1181	-13,73
	Sanfins	1970	1882	-4,47
	Sanguedo	3542	3600	1,64
	São João de Ver	8816	10579	20,0
	Caldas de São Jorge	2728	2716	-0,44
	Travanca	2201	2242	1,86
	Grijó	10267	10578	3,03
	Mafamude	38940	38544	-1,02
	Pedroso	18449	18714	1,44
	Perozinho	5950	6359	6,87
Vila Nova de Gaia	VNG (Sta. Marinha)	30758	30146	-1,99
	Seixezelo	1729	1712	-0,98
	Vilar de Andorinho	16710	18155	8,65
	Vilar do Paraíso	13126	13878	5,73

4.5 Identificação de situações a ser corrigidas

Tendo em vista a definição das estratégias mais adequadas para a redução da exposição ao ruído na envolvente do troço do IC2 em estudo, procedeu-se em primeiro lugar à identificação das zonas habitadas onde, em 2012, se estimaram valores de L_{den} e/ou L_{n} superiores ao valores limite regulamentares.

Neste contexto, considera-se recomendável que as zonas habitadas expostas a níveis sonoros superiores aos limites estabelecidos sejam alvo de intervenção pela seguinte ordem de prioridade, em função da magnitude das ultrapassagens dos valores limite de exposição:

- Zonas de Intervenção Prioritária de Grau 1: ultrapassagens superiores a 5 dB(A);
- Zonas de Intervenção Prioritária de Grau 2: ultrapassagens inferiores ou iguais a 5 dB(A).

No Quadro 4.11, adiante, listam-se as zonas habitadas onde foram identificadas situações de ultrapassagem dos valores limites de exposição relativas ao ano 2012, e que como tal devem ser alvo de estudo detalhado para definição de medidas adequadas visando reduzir os valores de L_{den} e L_{n} , de acordo com a regulamentação em vigor, atendendo à hierarquia de prioridades estabelecida.

Quadro 4.11 - Zonas do IC2 com níveis sonoros superiores aos limites regulamentares

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade	
Casal da Amieira	110+800 – 111+400	Nascente e Poente	1/2	
Aglomerado Habitacional	110+800 - 111+400	Nascente e Poente	1/2	
Adrões	111+500- 112+100	Nascente e Poente	2	
Aglomerado Habitacional	111+500-112+100	Nascente e Poente	2	
Quinta da Cerca-Batalha	112.100 112.000	Naccourte a Danasta	2	
Aglomerado Habitacional	112+100- 112+850	Nascente e Poente	2	
Jardoeira - Casal de Santo Antão	113+100- 115+000	Nascente e Poente	1/2	
Aglomerado Habitacional	113+100-115+000	Nascente e Poente	1/2	
Vale Gracioso	115.200 117.000	Necessary - Deces	1/2	
Habitações Isoladas	115+300 – 117+900	Nascente e Poente	1/2	

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade
Azóia	118+000- 119+400	Nascente e Poente	1/2
Aglomerado Habitacional	118+000- 119+400		
Quinta do Alto do Vieiro	120+200 120+300	Nascente	1/2
Habitações Isoladas	120+200 120+300		
Parceiros	121+300 – 121+600	Poente	1/2
Aglomerado Habitacional	121+300 - 121+600		
Quinta do Cabeço-Leiria	121.700 122.200	Nascente	1/2
Aglomerado Habitacional	121+700 - 123+200		
Sismaria	122,100, 122,700	Poente	1/2
Aglomerado Habitacional	123+400 - 123+700		
Marrazes	123+900 – 125+950	Nascente e Poente	1/2
Aglomerado Habitacional	128+250 – 128+400	Nascente e Poente	1/2
	128+800 – 129+250	Nascente	1/2
Boavista (Marrazes)	129+300 – 129+400	Nascente e Poente	1/2
Aglomerado Habitacional	129+800 – 130+500	Nascente	1/2
	130+250	Poente	2
Milagres		Nascente e Poente	1/2
Aglomerado Habitacional	130+800 – 131+200		
Vale Pereiro		Nascente e Poente	1/2
Habitações Isoladas	132+050 – 132+250		
Colmeias	400 500 400 000	Nascente e Poente	1/2
Habitações Isoladas	132+500 – 133+200		
Colmeias	422,250, 424,122	Nascente	1/2
Habitações Isoladas	133+350 – 134+100		
Colmeias	40: 575		1/2
Habitações Isoladas	134+350	Nascente Poente	
Bidoeira de Cima		Nascente e Poente	1/2
Aglomerado Habitacional	134+900 – 136		
Meirinhas	136+350	Poente	2
Habitações Isoladas	136+450 – 136+600	Nascente	1/2

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade
Meirinhas	136+800 – 139+700	Nascente e Poente	1/2
Aglomerado Habitacional			
Pombal (Vermoil)	146+500 – 147+450	Nascente e Poente	1/2
Habitações Isoladas			
Pombal		Nascente e Poente	1/2
Aglomerado Habitacional	147+500 – 149+400		
	149+500 – 149+600	Nascente	1/2
Pombal	149+950 - 150+000	Nascente	1/2
Habitações Isoladas	150+400 – 151+100	Poente	1/2
Pelariga	151+650- 154+900	Nascente e Poente	1/2
Aglomerado Habitacional	156+300- 156+650	Nascente e Poente	1/2
Pelariga	156+950		1
Habitação Isolada	156+950	Nascente	
Pelariga	157+500	Poente	1
Habitação Isolada	137+300		
Pelariga	157+850	Nascente	1
Habitação Isolada	137+830		
Redinha	158+850 – 159+900	Poente	1/2
Habitações Isoladas	1381830 1331300		
Redinha	159+300	Nascente	1
Habitação Isolada	160+150	Poente	1
Habitação Isolada	160+350	Nascente	1
Redinha	160+800	Nascente e Poente	1/2
Habitação Isoladas	1007800	nascente e Poente	
Redinha	161+400 – 162+700	Nascente e Poente	1
Aglomerado Habitacional	101+400 - 102+700	ivascente e Poente	
Redinha	163+550	Poente	1/2
Habitação Isolada			
Tapéus	164+000	Nascente	1
Habitação Isolada	164+000	Poente	1

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade
Tapéus	164+500 – 164+300	Nascente e Poente	1/2
Aglomerado Habitacional		Nuscente e i bente	
Tapéus	165+950	Nascente	1
Habitação Isolada	166+100	Poente	1/2
Ega	167,100 169,000	Nascente e Poente	1/2
Aglomerado Habitacional	167+100 – 168+000		
Vale Janes	160,300, 160,800	Nascente e Poente	1/2
Aglomerado Habitacional	169+300 – 169+800		
Arrifana	173,600 173,350	Nascente e Poente	1/2
Aglomerado Habitacional	172+600 – 173+250		
Salgueiro	173+600 – 173+700	Nascente	2
Aglomerado Habitacional	174+350 – 174+400	Poente	1/2
Condeixa-a-Nova	174.750 176.800	Nascente e Poente	1/2
Aglomerado Habitacional	174+750 – 176+800		
Gorgulhão	177+200 – 177+250	Nascente e Poente	1/2
Habitações Isoladas	177+200 - 177+250		
Orelhudo	177,050, 170,250	Nascente e Poente	1/2
Habitações Isoladas	177+950 – 178+250		
Habitações Dispersas	178+500 – 178+700	Nascente e Poente	1
Casconha	179,700 191,100	Nascente e Poente	1/2
Aglomerado Habitacional	178+700 – 181+100		
Tapadas	191.100	Nascente	1
Habitação isolada	181+100		
Assafarge	182+3000 – 183+300	182+3000 - Naccourte a Bassilla	1/2
Aglomerado Habitacional		Nascente e Poente	
Antonhol	183+400 – 183+800	Poente	1/2
Antanhol Aglomerado Habitacional	183+400 - 183+850 184+100 - 185+100	Nascente	1
Agiomerado nabitacional		Nascente e Poente	1/2
Santa Clara (Coimbra)	184+500 – 185+000	Nascente e Poente	1/2
Habitações Dispersas			

PK da Via	Sentido	Grau de prioridade
		2
185+750 – 186+650	Nascente e Poente	1/2
236+100 – 238+160	Nascente e Poente	1/2
239+510	Poente	2
239+580 – 239+610	Nascente	1/2
		,
240+110	Nascente	2
2101110	ruscente	_
240+610 - 240+980	Nascente e Poente	1/2
2401010 - 2401300	Nascente e i dente	1/2
241+200	Poonto	2
241+200	Poente	2
241.750 242.850	Nacconto o Doonto	1/2
241+750 - 242+850	Nascente e Poente	1/2
244.790 244.050	Naccenta	1/2
244+780 - 244+950	Nascente	1/2
245 222 245 522		1/0
245+230 - 246+500	Nascente e Poente	1/2
		_
246+900 - 247+220	Poente	2
247+420 - 248+020	Nascente e Poente	1/2
248+220	Poente	2
248+600	Nascente e Poente	1
249+100	Nascente	1
		185+550 Poente 185+750 – 186+650 Nascente e Poente 236+100 – 238+160 Nascente e Poente 239+510 Poente 239+580 – 239+610 Nascente 240+110 Nascente 240+610 - 240+980 Nascente e Poente 241+200 Poente 241+750 - 242+850 Nascente e Poente 244+780 - 244+950 Nascente e Poente 245+230 - 246+500 Nascente e Poente 247+420 - 248+020 Nascente e Poente 248+220 Poente 248+600 Nascente e Poente

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade	
Albergaria-a-Velha	240.800	Naccenta	2	
Habitação Isolada	249+800	Nascente	2	
Albergaria-a-Velha	251.000 251.290	Naccento	1/2	
Aglomerado Habitacional	251+000 - 251+280	Nascente	1/2	
Albergaria-a-Velha - Oliveira de Azeméis	251+480 - 256+830	Nascente e Poente	1/2	
Aglomerado Habitacional	251+460 - 250+650	Nascente e Poente	1/2	
Oliveira de Azeméis	257+200 - 257+980	Nascente e Poente	1/2	
Aglomerado Habitacional	257+200 - 257+980	Nascente e Poente	1/2	
Oliveira de Azeméis	258+200	Poente	1	
Habitação Isolada	256+200	Poente	1	
Oliveira de Azeméis	258+410 - 260+600	Nascente e Poente	1/2	
Aglomerado Habitacional	258+410 - 260+600	Nascente e Poente	1/2	
Oliveira de Azeméis	261+650 - 261+750	Nascente e Poente	2	
Aglomerado Habitacional	201+030 - 201+730	Nascente e Poente		
Oliveira de Azeméis	261+970 - 262+590	Nascente e Poente	1/2	
Aglomerado Habitacional	201+970 - 202+390	Nascente e Poente	1/2	
Oliveira de Azeméis	262+900 - 263+000	Nascente e Poente	1/2	
Aglomerado Habitacional	202+900 - 203+000	Nascente e Poente	1/2	
Oliveira de Azeméis	263+300 - 263+400	Necesite	2	
Aglomerado Habitacional	203+300 - 203+400	Nascente	2	
Oliveira de Azeméis	263+500 - 264+300	Nascente e Poente	1/2	
Aglomerado Habitacional	203+300 - 204+300	Nascente e Poente	1/2	
Santiago de Riba	264+400 - 267+600	Nascente e Poente	1/2	
Aglomerado Habitacional	264+400 - 267+600	Nascente e Poente	1/2	
S. Roque	267+950 - 268+100	Poente	1/2	
Aglomerado Habitacional	207+930 - 208+100	Poente	1/2	
S. Roque	268+100 - 269+200	Nascente e Poente	1/2	
Aglomerado Habitacional	200+100 - 209+200	ivascente e Poente	1/2	
São João da Madeira	270+000 - 270+700	Poente	1/2	
Aglomerado Habitacional	2/0+000 - 2/0+/00	roente	1/2	

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade
São João da Madeira			_
Habitação Isolada	270+480	Nascente	2
São João da Madeira			1.60
Aglomerado Habitacional	270+710 - 271+000	Nascente	1/2
São João da Madeira	271.100 271.200	Naccourte	2
Aglomerado Habitacional	271+100 - 271+200	Nascente	2
São João da Madeira	271.220 271.520	Necesta e Deeste	1/2
Aglomerado Habitacional	271+230 - 271+520	Nascente e Poente	1/2
São João da Madeira	271,000 272,120	Nacconto	2
Aglomerado Habitacional	271+880 - 272+120	Nascente	2
São João da Madeira	272+190 - 273+540	Nascente e Poente	1/2
Aglomerado Habitacional	272+190 - 273+340	Nascente e Poente	1/2
Milheirais de Poiares	273+550 - 275+300	Nascente e Poente	1/2
Aglomerado Habitacional	273+330 - 273+300	Nascente e roente	1/2
Arrifana	275+400 - 276+300	Nascente e Poente	1/2
Aglomerado Habitacional	2731400 2701300	Nascente e i ocine	1,2
Sanfins	276+350 - 277+380	Nascente e Poente	1/2
Aglomerado Habitacional	2701330 2771300	Nascente e i ocine	1,2
Pigeiros	277+710 - 277+900	Poente	1
Aglomerado Habitacional	2771710 2771300	Toente	1
Caldas de S. Jorge	277+960 - 279+200	Nascente e Poente	1/2
Aglomerado Habitacional	277.300 273.200	Nascente e i sente	1,2
Caldas de S. Jorge	279+400 - 279+700	Poente	1
Aglomerado Habitacional	273.400 273.700	Toente	1
Caldas de S. Jorge	279+860 - 281+000	Nascente e Poente	1/2
Aglomerado Habitacional	273.000 201.000		-, -
S. João de Ver	281+020 - 281+680	Nascente e Poente	1/2
Aglomerado Habitacional	201.020 201.000		-, -
Lourosa	281+750 - 283+900	Nascente e Poente	1/2
Aglomerado Habitacional	203.300		-,-

Local / Tipo de Ocupação	PK da Via	Sentido	Grau de prioridade
Fiães Aglomerado Habitacional	283+910 - 284+800	Nascente e Poente	1/2
Mozelos Aglomerado Habitacional	284+810 - 285+050	Nascente e Poente	1/2
Argoncilhe Aglomerado Habitacional	285+150 - 286+880	Nascente e Poente	1/2
Nogueira da Regedoura Aglomerado Habitacional	286+880 - 287+400	Nascente e Poente	1/2
Grijó Aglomerado Habitacional	287+410 - 288+800	Nascente e Poente	1/2
Seixezelo Aglomerado Habitacional	288+810- 291+030	Nascente e Poente	1/2
Perosinho Aglomerado Habitacional	291+280 - 292+420	Nascente e Poente	1/2
Pedroso Aglomerado Habitacional	292+470 - 294+277	Nascente e Poente	1/2

5 MEDIDAS DE REDUÇÃO DO RUÍDO IMPLEMENTADAS E PROJECTOS EM CURSO

Uma parte do troço do IC2 considerado para efeitos de elaboração do MER, faz parte da Subconcessão Litoral Oeste. Este troço foi alvo de dois projectos efectuados pela Subconcessionária, designadamente a concepção e construção do IC2 — Variante da Batalha cuja última parte se sobrepõe ao IC2 e o troço IC2 — Nó do IC36/Nó da N109, tendo sido a AELO — Auto-Estradas Litoral Oeste a proceder ao projecto de medidas de minimização de ruído e à sua implementação. Neste âmbito foram instaladas as barreiras acústicas cujas características são apresentadas no quadro seguinte. De salientar que ao longo de toda a barreira acústica designada por B3 foram aplicados difusores de topo que permitirão uma redução suplementar de 3 dB(A).

Quadro 5.1 - Barreiras acústicas já instaladas no IC2 Batalha Sul/Porto

Projecto	Barreira	Lado da via	Km inicial	Km final	Altura (m)	Painéis
IC2 - Variante da Batalha	B11	Direito	119+225	119+425	5	Metálicos Absorventes
	B1	Esquerdo	121+260	121+350	5	Metálicos Absorventes
	B2	Esquerdo	121+350	121+560	4	Metálicos Absorventes
IC2 - IC36/EN109	B3	Direito	122+780	123+190	2.5-6.5	Acrílicos Reflectores e Metálicos Absorventes
	B4	Esquerdo	123+540	123+650	2	Metálicos Absorventes

A localização em planta das barreiras instaladas é apresentada nas figuras seguintes.

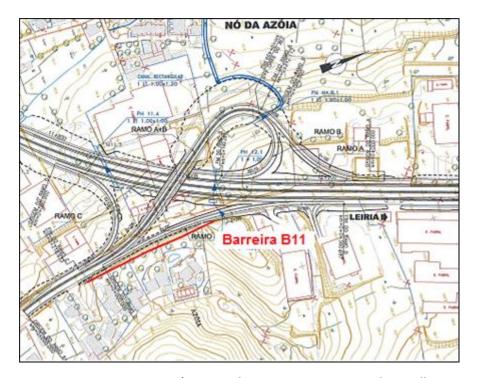


Figura 5.1 - Barreira Acústica 11 do troço IC2 – Variante da Batalha

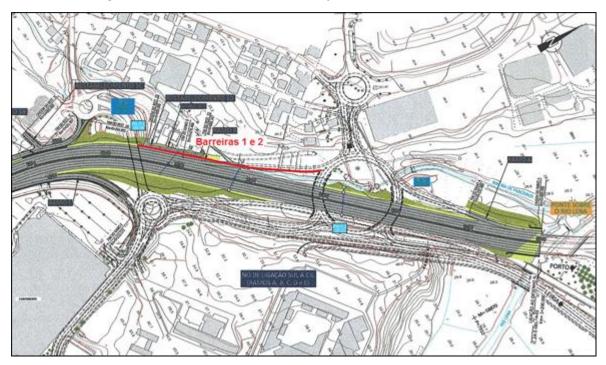


Figura 5.2 - Barreiras Acústicas 1 e 2 do troço IC2 - IC36/#N109

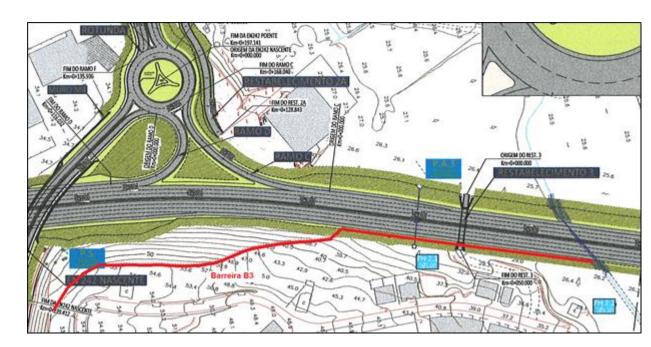


Figura 5.3 - Barreira Acústica 3 do troço IC2 - IC36/EN109

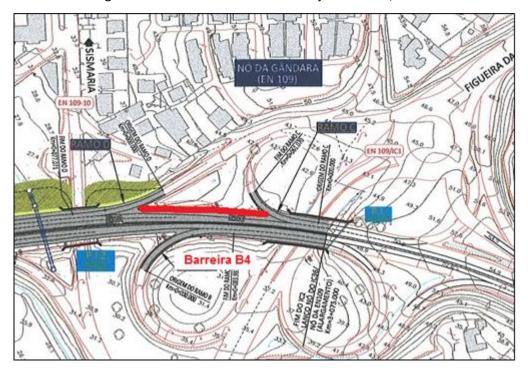


Figura 5.4 - Barreira Acústica 4 do troço IC2 - IC36/EN109

6 ACÇÕES PREVISTAS PARA UM HORIZONTE DE CINCO ANOS E ESTRATÉGIAS A LONGO PRAZO

Para reduzir os níveis de ruído neste troço do IC2, considerou-se como primeira medida de minimização a aplicação de uma camada de desgaste com características de absorção acústica ao longo de todo o traçado, que garantirá uma redução de cerca de 4 dB(A). Este tipo de camada será aplicado aquando da beneficiação/reabilitação dos diferentes troços que constituem o troço de 182 km em estudo.

A calendarização das intervenções a efectuar neste troço será explicitada em relatório próprio a elaborar para o conjunto das Grandes Infra-estruturas de Transporte, sob jurisdição da EP – Estradas de Portugal.

De salientar, no entanto, que o ruído é agora considerado como um dos critérios a ter em conta na definição de prioridades de intervenção, assumindo desta forma as GIT uma posição prioritária relativamente a outras vias que não se encontram abrangidas por esta classificação.

Além desta medida serão introduzidas medidas de redução de velocidade em zonas onde essa redução seja viável e se obtenham reduções significativas. Por último, serão projectadas barreiras acústicas nos locais onde permaneçam situações de incumprimento e seja viável a sua instalação.

Embora seja esta a estratégia prevista para o IC2, uma vez que não é previsível, no curto prazo a beneficiação/reabilitação do troço em toda a sua extensão e tendo-se constatado que, em determinados locais se registam níveis de ruído ambiente muito elevados, que deram mesmo origem a reclamações de ruído serão projectadas barreiras acústicas nos locais onde seja viável a sua instalação. A instalação destas barreiras será faseada no tempo ocorrendo numa primeira fase nos locais com grau de prioridade 1 (ver Quadro 4.11). As características destas barreiras são apresentadas no Quadro seguinte.

Quadro 6.1 – Barreiras acústicas projectadas

Barreira	Lado da via	Km inicial	Km final	Altura (m)	Painéis
B1a	Porto Batalha	124+000	124+524	4	Metálicos Absorventes
B1b	Porto Batalha	124+524	125+000	4	Metálicos Absorventes
B2a	Batalha Porto	124+080	124+290	3	Metálicos Absorventes
B2b	Batalha Porto	124+290	125+435	4	Metálicos Absorventes
В3	Batalha Porto	124+725	124+855	4	Metálicos Absorventes
B4	Batalha Porto	125+135	125+325	4	Metálicos Absorventes
B5	Porto Batalha	125+300	125+370	4	Metálicos Absorventes
В6	Batalha Porto	125+370	125+460	4	Metálicos Absorventes
B7a	Porto Batalha	125+386	125+486	4	Metálicos Absorventes
B7b	Porto Batalha	125+700	125+760	4	Metálicos Absorventes
В7с	Porto Batalha	125+783	125+853	4	Metálicos Absorventes
B8	Batalha Porto	125+637	125+762	2	Metálicos Absorventes
В9	Porto Batalha	126+600	126+730	4	Metálicos Absorventes
B10	Porto Batalha	191+537	191+637	4	Metálicos Absorventes
B11	Porto Batalha	191+925	192+100	4	Metálicos Absorventes
B12	Porto Batalha	192+575	192+770	4	Metálicos Absorventes
B13	Batalha Porto	194+285	194+385	4	Acrílicos Reflectores

Barreira	Lado da via	Km inicial	Km final	Altura (m)	Painéis
B14a	Porto Batalha	194+550	194+650	4	Metálicos Absorventes
B14b	Porto Batalha	194+670	194+840	4	Metálicos Absorventes
B15a	Batalha Porto	194+800	194+900	4	Metálicos Absorventes
B15b	Batalha Porto	194+900	194+975	4	Metálicos Absorventes
B16	Porto Batalha	196+452	196+650	4	Metálicos Absorventes
B17	Batalha Porto	196+600	196+670	4	Metálicos Absorventes
B20	Batalha Porto	261+980	262+060	4	Metálicos Absorventes
B21a	Porto Batalha	262+400	262+465	4	Metálicos Absorventes
B21b	Porto Batalha	262+528	262+578	3,5	Metálicos Absorventes
B23	Porto Batalha	264+680	264+780	4	Metálicos Absorventes
B24	Batalha Porto	264+890	264+970	4	Metálicos Absorventes
B25	Batalha Porto	265+120	265+180	4	Metálicos Absorventes
B26	Batalha Porto	265+410	265+510	4	Acrílicos Reflectores
B27	Batalha Porto	265+585	265+655	4	Metálicos Absorventes
B28	Batalha Porto	266+830	266+900	4	Metálicos Absorventes
B30	Batalha Porto	268+415	268+600	4,5	Metálicos Absorventes
B31	Porto Batalha	268+940	269+000	3	Acrílicos Reflectores
B32	Porto Batalha	270+267	270+367	3,5	Metálicos Absorventes

Barreira	Lado da via	Km inicial	Km final	Altura (m)	Painéis
B33	Batalha Porto	271+327	271+417	4	Metálicos Absorventes
B34	Porto Batalha	271+483	271+563	4	Metálicos Absorventes
B35	Batalha Porto	272+500	272+550	4	Metálicos Absorventes
B36	Porto Batalha	272+550	272+650	4	Metálicos Absorventes
B37	Batalha Porto	273+577	273+627	4	Metálicos Absorventes
B39a	Porto Batalha	274+780	274+945	4	Metálicos Absorventes
B39b	Porto Batalha	275+003	275+133	4	Metálicos Absorventes
В39с	Porto Batalha	275+178	275+238	4	Acrílicos Reflectores
B40	Batalha Porto	274+800	274+900	3	Metálicos Absorventes

Além disso, e dando cumprimento às estratégias referidas anteriormente, no âmbito do projecto IC2 (EN1) - Beneficiação entre Leiria (km 124+000)/LD Coimbra (km 163+506) foi já contemplada uma camada de desgaste com características de absorção acústica. Este projecto deverá ser realizado durante o ano de 2014, estando a obra contemplada no "Plano de Investimentos da EP — Estradas de Portugal, S.A. para 2014 e Anos Seguintes".

No âmbito deste projecto, além da camada de desgaste, serão ainda instaladas as barreiras acústicas B1 a B9 nos locais onde permaneciam situações de incumprimento.

Nos Desenhos 3 e 4 apresentam-se os mapas de Ruído após implementação das medidas propostas.

Após a implementação das medidas de minimização, estima-se que a população e habitações expostas ao ruído apresentem os quantitativos indicados nos quadros seguintes:

Quadro 6.2 - População estimada (em centenas) exposta a diferentes gamas de valores de L_{den} a 4 m de altura e na "fachada mais exposta"

INTERVALOS DE EXPOSIÇÃO	POPULAÇÃO EXPOSTA ⁽¹⁾
dB(A)	x 10 ²
55 < L _{den} ≤ 60	127
60 < L _{den} ≤ 65	78
65 < L _{den} ≤ 70	71
70 < L _{den} ≤ 75	77
L _{den} > 75	5

⁽¹⁾ Números arredondados à centena mais próxima. Quando o valor é inferior a 50 arredondase para zero.

Quadro 6.3 - População estimada (em centenas) exposta a diferentes gamas de valores de L_n a 4 m de altura e na "fachada mais exposta"

INTERVALOS DE EXPOSIÇÃO	POPULAÇÃO EXPOSTA ⁽¹⁾
dB(A)	x 10 ²
45 < L _n ≤ 50	166
50 < L _n ≤ 55	100
55 < L _n ≤ 60	65
60 < L _n ≤ 65	69
65 < L _n ≤ 70	12
L _n > 70	0

⁽¹⁾ Números arredondados à centena mais próxima. Quando o valor é inferior a 50 arredondase para zero.

Quadro 6.4 - Área total (em $\rm km^2$), número estimado de habitações e população exposta a diferentes gamas de valores de $\rm L_{den}$ a 4 m de altura e na "fachada mais exposta"

NÍVEIS DE	ÁREA TOTAL ⁽¹⁾	NÚMERO ESTIMADO	POPULAÇÃO EXPOSTA ⁽²⁾
EXPOSIÇÃO dB(A)	(km²)	DE HABITAÇÕES ⁽²⁾ x 10 ²	x 10 ²
L _{den} > 75	2.4	2	5
L _{den} > 65	15.0	33	153
L _{den} > 55	52.5	107	358

⁽¹⁾ A área total objecto de análise é ≈ 120,1 km²

Verifica-se que, com a implementação das medidas de minimização existem ainda pessoas expostas a níveis de ruído superiores a 65 dB(A) para o indicador L_{den} (153 centenas) e a 55 dB(A) para o indicador L_n (146 centenas). Como referido anteriormente, para estas situações, dada a existência directa de acessos entre a rodovia e as habitações, não é viável a colocação de barreiras acústicas.

⁽²⁾ Valores arredondados à centena mais próxima. Quando o valor é inferior a 50 é arredondado para zero.

7 ANÁLISE DE CUSTOS

A implementação de pavimento pouco ruidoso na área a intervir traduz-se numa área global de cerca de 1.365.000 m². Considerando o custo unitário de 5 € por metro quadrado de camada de desgaste, valor médio que resulta da diferença de aplicação de uma camada de desgaste com características de absorção acústica face ao betuminoso convencional, os custos associados a esta medida de minimização podem estimar-se em cerca de 6.825.000,00 €.

A área de barreiras acústicas considerada foi de 20.935 m², com um custo associado de cerca de 150,00 €/m², o que se traduz em 3.140.250,00 €.

No quadro seguinte apresenta-se o custo associado à implementação de pavimento pouco ruidoso na área a intervir.

Quadro 7.1 – Custos associados à implementação de pavimento pouco ruidoso

NÍVEIS DE	PESSOAS EXPOSTAS		CUSTO GLOBAL	CUSTO/PESSOA
EXPOSIÇÃO dB(A)	SEM MEDIDAS	COM MEDIDAS	[€]	[€]
L _n > 55 ⁽¹⁾	23100	14600	6.825.000,0	803,0
L _n > 33	23100	14600	6.823.000,0	803,0

(1) Indicador mais desfavorável

Faz-se notar que embora se pretenda com esta medida de minimização reduzir os quantitativos de população exposta a valores não regulamentares, os benefícios associados à sua implementação estendem-se a todos os receptores localizados nas imediações da infra-estrutura rodoviária.

8 INFORMAÇÃO AO PÚBLICO

Segundo o artigo 14º, do Decreto-Lei n.º 146/2006, de 31 de Julho, os Planos de Acção deverão ser disponibilizados e divulgados junto do público previamente à sua aprovação pela Agência Portuguesa do Ambiente.

Para isso, é facultado ao público o projecto de Plano, acompanhado de uma síntese que destaque os seus elementos essenciais, o qual está disponível para consulta no sítio da EP, SA e junto das Câmaras Municipais atravessadas pelo troço objecto do Plano. Os resultados da Consulta são apresentados em volume próprio.

9 MEDIDAS PREVISTAS PARA AVALIAR A IMPLEMENTAÇÃO E OS RESULTADOS DO PLANO DE ACÇÃO

A Avaliação constitui o processo que ocorre após a aprovação do Plano de Acção, e que inclui programas de monitorização, de modo a garantir o cumprimento das condições prescritas no Plano de Acção, avaliar a eficácia das medidas de redução sonora adoptadas e, se necessário, considerar a adopção de medidas de minimização adicionais.

As medidas previstas para avaliar a implementação e os resultados do Plano de Acção passarão assim pela realização de campanhas de monitorização, a efectuar após a implementação das medidas de redução.

10 NOTAS FINAIS

De acordo com o Decreto-Lei n.º 146/2006, que transpõe a Directiva n.º 2002/49/CE do Parlamento Europeu e do Conselho, é obrigatória a elaboração de Planos de Acção relativos às fontes ruidosas importantes, para gestão do ruído ambiente e para minimização dos problemas inerentes ao mesmo, tendo como base a informação extraída dos correspondentes Mapas Estratégicos de Ruído.

A análise dos Mapas Estratégicos de Ruído referentes ao Lanço do IC2 em análise, permitiu concluir que no ano de 2012 cerca de 177 (cento e setenta e sete) centenas de pessoas estavam expostas a valores L_{den} superiores ao limite regulamentar aplicável e que a situação se agrava quando se analisa o indicador L_n, verificando-se que cerca de 231 (duzentas e trinta uma) centenas de pessoas estavam expostas a valores L_n acima do valor máximo admissível, considerando-se assim necessária a adopção de medidas para redução do ruído de tráfego na via em causa.

Neste contexto, as condições acústicas apercebidas nas áreas afectadas foram objecto de avaliação, tendo sido especificado o tipo de medidas consideradas adequadas para eliminar as situações de incumprimento legal, o que ocorrerá de forma faseada.

Dadas as características da via em análise, as medidas acima referidas consistem na aplicação de camada de desgaste pouco ruidosa em secções da via e/ou redução de velocidade efectiva de circulação, e complementarmente na edificação de barreiras acústicas, de forma pontual.

11 DOCUMENTAÇÃO CONSULTADA

Decreto-Lei n.º 9/2007, de 17 de Janeiro, que aprova o Regulamento Geral do Ruído (RGR), rectificado pela Declaração de Rectificação n.º 18/2007, de 16 de Março e alterado pelo Decreto-Lei n.º 278/2008, de 1 de Agosto;

Decreto-Lei n.º 146/2006, de 31 de Julho, transposição para o regime jurídico Português da Directiva 2002/49/CE do Parlamento Europeu e do Conselho, de 25 de Junho, sobre Avaliação e Gestão do Ruído Ambiente;

Agência Portuguesa do Ambiente, **Directrizes para Elaboração de Mapas de Ruído, versão 2**, de Junho de 2008;

Instituto Português da Qualidade, **Norma Portuguesa NP 1730: Acústica – Descrição e Medição do Ruído Ambiente**, 1996;

Association Française de Normalisation (AFNOR), Normalisation Française XPS 31-133: Bruit des Infrastructures de Transports Terrestres – Calcul de l'Atténuation du son Lors de sa Propagation en Milieu Extérieur, Incluant les Effets Météorologiques, 2001;

Instituto do Ambiente, **Procedimentos Específicos de Medição de Ruído Ambiente**, 2003;

European Commission Working Group for Assessment of Exposure to Noise (WG-AEN), Good Practice Guide for Strategic Noise Mapping and Production of Associated Data on Noise Exposure, 2006;

Service d'Études Techniques des Routes et Autoroutes (SETRA), **Bruit des** Infrastructures Routières – NMPB/ROUTES 96: Nouvelle Méthode de Calcul Incluant les Effets Météorologiques, 1997;

LNEC, Ruído de Tráfego Rodoviário - Informação Técnica de Edifícios n.º 7, 1975;

Centre d'Études des Transports Terrestres, **Prévisions des Niveaux Sonores – Guide du Bruit des Transports Terrestres**, 1980.

Alfragide, 10 de Abril de 2015

PROCESL Engenharia Hidráulica e Ambiental, S.A. A Administração

De Filipe Feren